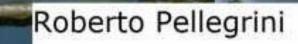

Habitats Invaded by European Frogbit (*Hydrocharis morsus-ranae*) in Lake Ontario Coastal Wetlands

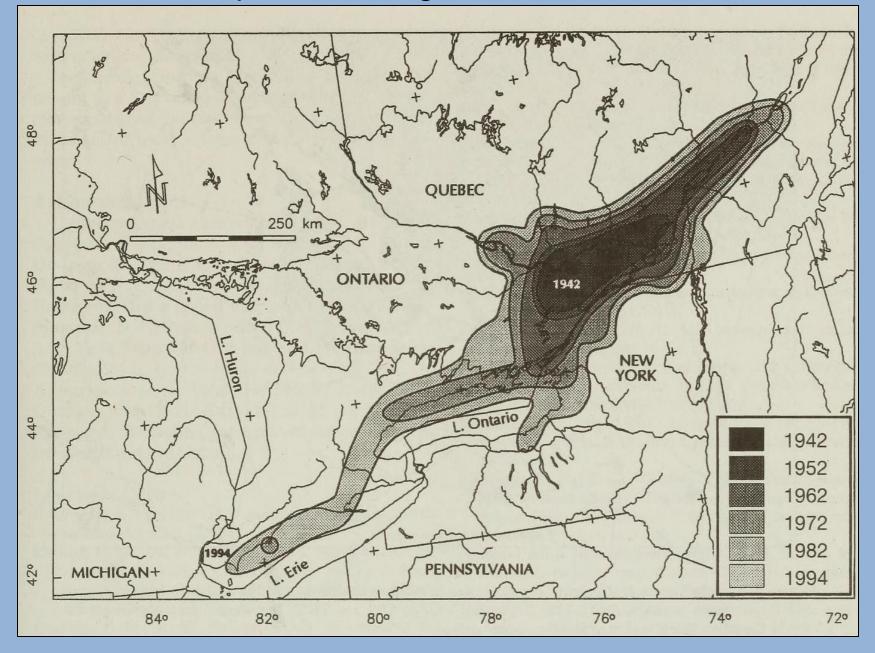
Brad Mudrzynski, Douglas A. Wilcox, and Aaron Heminway

The College at Brockport, State University of New York

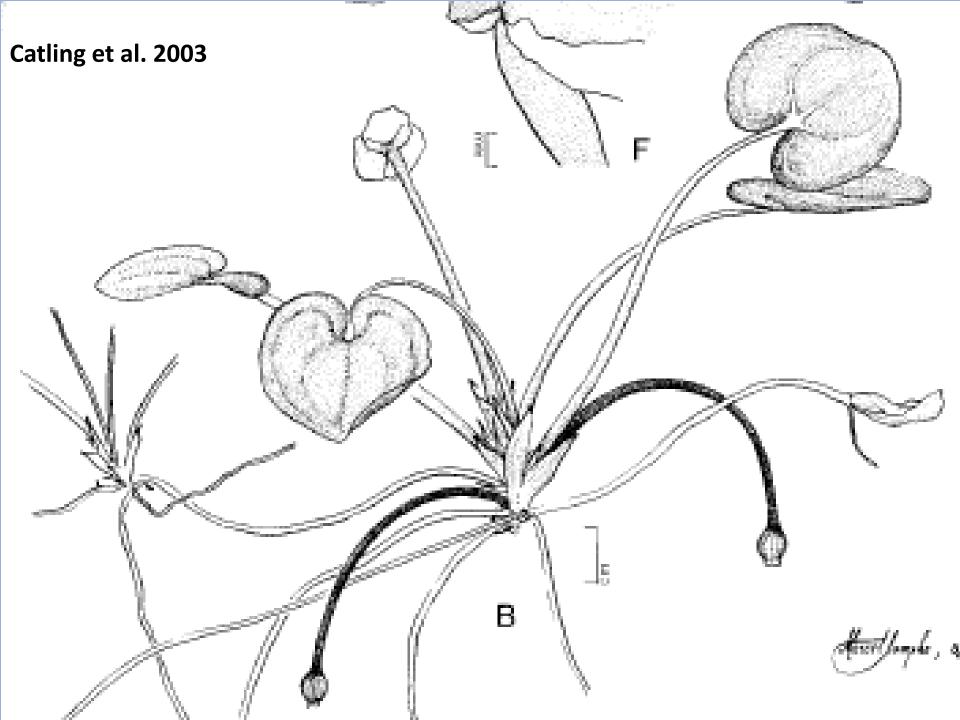


What Is Hydrocharis morsus-ranae?

- Member of Hydrocharitaceae
- Similar to and confused with American frogbit (*Limnobium spongia*)
 - Native to SE United States
- Range
 - Native to most of Europe and northern Asia
 - Introduced and invasive in United States and Canada
- Non-rooted, floating aquatic plant
- Shallow water, little to no wave energy



Introduction and Dispersal


- 1932- Central Experiment Farm arboretum in Ottawa, Ontario
 - From trench, to Dows Lake, to Rideau Canal and onward (Minshall 1940)
- Common in St. Lawrence River, Lake Ontario, Lake Champlain, and inland
- Less common in Lake Erie

• Map from Catling and Porebski 1995

Reproduction

- Turions (asexual winter buds) form on stolons
 - Abscess in fall
 - Float to surface in spring
- Up to 10 ramets grow from each new turion
 Each ramet can produce 10 new turions
- Turions viable for 16-24 months (Burnham 1998)
- Sexual reproduction is possible
 - Much less prevalent (Burnham 1988)

Impacts

- Rapid population growth rate creates dense mats
- Tough yet flexible stolons interlock
 - Creates thick, floating mats
- 95% decline in native submersed vegetation species (Catling et al. 1988)
- Fewer snails, crustacea, and insect larve under mats (Catling et al. 1988)
- Inhibits recreational boating activity

Goals

- Quantify invasion characteristics
 - Spatially within wetlands
 - Among hydrogeomorphic classes
 - Correlations with hydrologic, chemical, and physical data
- Data from Great Lakes Indicators Consortium: Implementing Great Lakes Coastal Wetland Monitoring Project
 - EPA-GLRI 2010
 - Only using Lake Ontario Data

Data Collection

- 45 vegetation quads per wetland
 - Three vegetation zones (not always)
 - SAV, emergent, meadow marsh
 - Three transects per wetland, perpendicular to elevation gradient
 - Five qauds per transect in each zone

•15 quads per transect•3 transects

Plant Quad Data Used

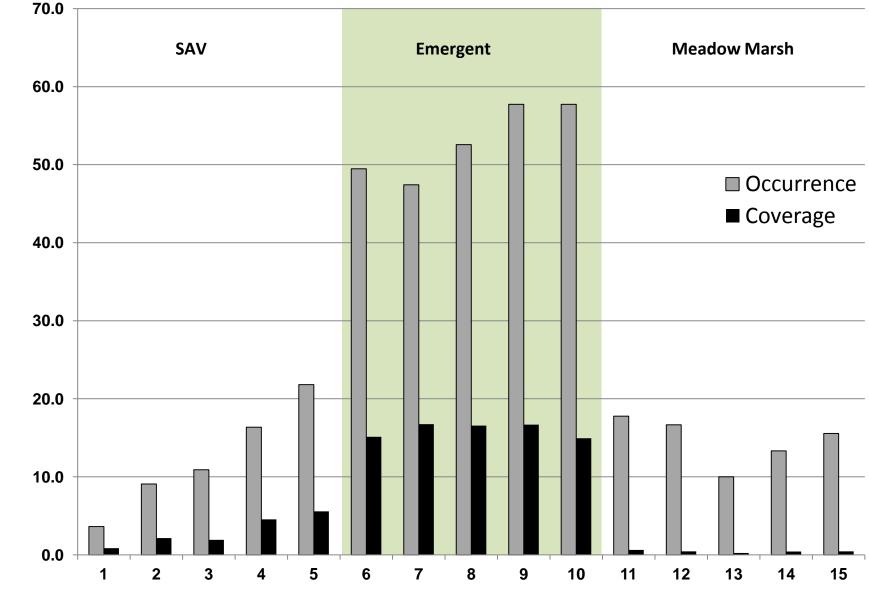
- Species cover and occurrence
 - Frogbit
- Habitat data
 - Water depth
 - Organic depth
 - Detritus cover
 - Invasive cattail (Typha angustifolia, Typha X glauca)
 - Dominant emergent species

Water Quality Data Used

- Site level data
 - Mostly collected in SAV
- Parameters
 - TN, NO₂/NO₃-N, TP, OP, alkalinity, specific conductance, chloride, and color

Statistical Analyses

- Kruskal-Wallace for cover and occurrence
 - HGM
 - Zone
- Principal Components Analysis
 - Chemistry and physical habitat characteristics
 - Transformed for normality and standardized (z-score)
- Non-parametric correlations
 - Principal components vs frogbit cover and occurrence

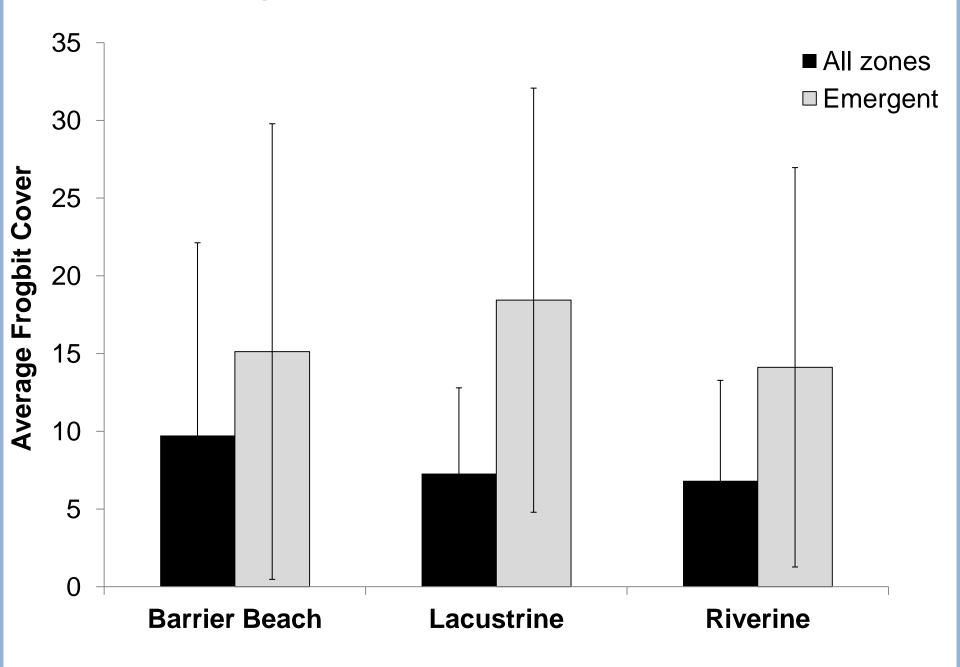

Results: Average Cover

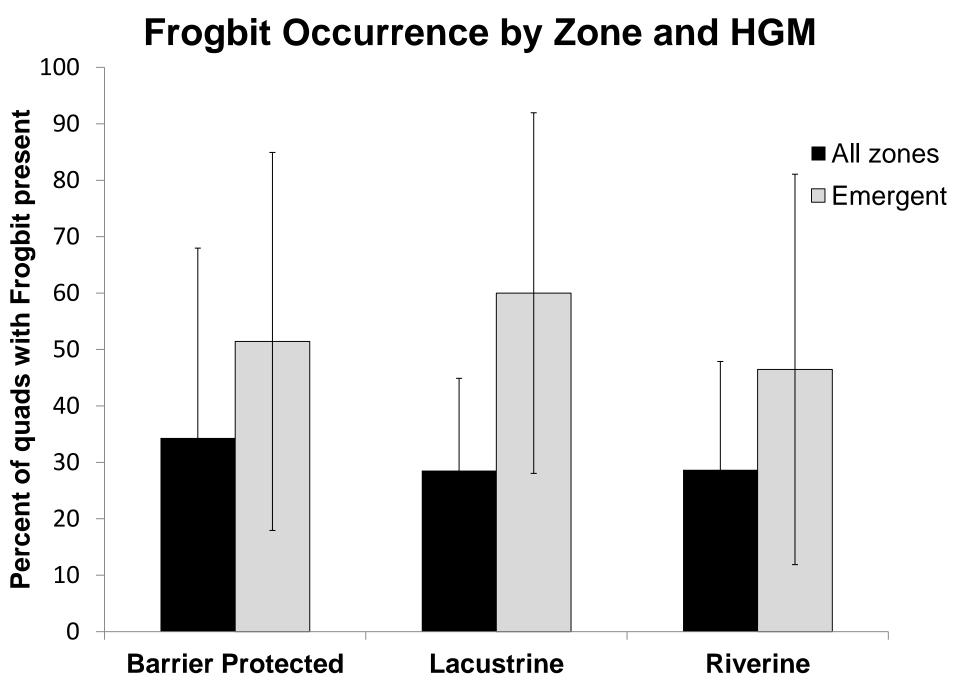
- Present in 29 of 34 sites (85%)
- All zones: 7.54%
 - Range: 0.0-35.4%
- Emergent zone: 16.0%
 - Range: 0.0-39.7%
- Greatest cover in emergent zone
 - $-\chi^2$ = 36.196, df = 2, p=0.000
 - SAV ≈ Meadow Marsh

Results: Quad Occurrence

- All zones: 29.8%
 - Range: 0.0-100%
- Emergent zone: 51.5%
 - Range: 0.0-100%
- Most prevalent in emergent zone
 - $-\chi^2$ = 30.099, df = 2, p=0.000
 - SAV ≈ Meadow Marsh

Frogbit Cover and Occurrence Along Vegetation Transect




Quad Location On Transect

Results: Cover and Occurrence by HGM

- No significant differences among HGM
 - Cover
 - All zones: H(2) = 0.132, P = 0.936
 - Emergent zone only: H(2) = 0.609, P = 0.738
 - Occurrence
 - All zones: H(2) = 0.025, P = 0.988
 - Emergent zone only: H(2) = 0.609, P = 0.738

Frogbit Cover by HGM and Zone

Results: PCA

• Three PCs retained 68.8% of variance

PC1 "Runoff"	PC2 "Growth Inhibitors"	PC3 "Water and Phosphorus"	
Specific Conductance (+)	Detritus Cover (+)	Water Depth (+)	
Chloride Ion (+)	Organic Depth (+)	Total P (+)	
Alkalinity (+)	Color (+)	Ortho P (+)	
Total N (+)			
NO ₂ /NO ₃ -N (+)			

Results: Correlations

	Emergent		All Zones	
РС	Cover	Occurrence	Cover	Occurrence
Runoff	r= -0.346, p=0.048	r= -0.370, p= 0.034	r= -0.286, p= 0.107	r= -0.264, p= 0.137
Growth Inhibitors	r= -0.054, p= 0.766	r= -0.062, p= 0.732	r= 0.001, p= 0.997	r= 0.115, p= 0.525
Growth Enhancers	r= 0.111, p= 0.537	r= 0.101, p= 0.577	r= 0.162, p= 0.369	r=0.108, p= 0.548

• "Runoff" was the only correlated PC

•Emergent

Cover and Occurrence significant

•All Zones

Not significant

•All negative correlations

Discussion

- European frogbit prevalent throughout Lake Ontario
- Frogbit can achieve high densities
 - Site level maximum: 35.4%
 - Emergent zone maximum: 39.7%
 - Individual quads: 100%
- Ecosystem effects

What was most invaded?

- No differences among HGM
- Drastic differences among vegetation zones
 - Mostly in emergent
 - Protection from waves
 - Deep enough water
 - Meadow marsh
 - Only if sufficient standing water
 - SAV
 - Only if protected

Discussion: Runoff

- Frogbit decreased with increasing "runoff"
 - Europe: mesotrophic and low salt waters
 - What if we clean up the lakes?
- Mechanism still unknown
 - Direct chemical inhibition?
 - Indirect effects?
 - Need controlled experiments

The Other Great Lakes and Beyond

- Extrapolating results may be tricky
 - Lake Ontario is unique
 - Hydroperiod, nutrient combinations, species assemblage, etc.
- Most vulnerable areas:
 - Any HGM
 - Emergent zones
 - Low runoff

Literature Cited

- Burnham, J.C. 1988. The contribution of seeds and turions towards population growth and persistence of *Hydrocharis morsus-ranae*. Thesis. The University of Guelph, Guelph, Ontario.
- Catling, P.M., and Z.S. Porebski. 1995. The spread and current distribution of European frogbit, *Hydrocharis morsus-ranae* L., in North America. The Canadian Field Naturalist 109: 236-241.
- Catling, P.M., K.W. Spicer, and L.P. Lefkovitch. 1988. Effects of the introduced floating vascular aquatic, *Hydrocharis morsus-ranae* (Hydrocharitaceae), on some North American aquatic macrophytes. Naturaliste Canadien 115:131-137.
- Catling, P.M., G. Mitrow, E. Haber, U. Posluszny, and W.A. Charlton. 2003. The biology of Canadian weeds. 124. *Hydrocharis morsusranae* L. Canadian Journal of Plant Science 83: 1001-1016.
- Minsahll, W.H. 1940. Frog-bit, *Hydrocharis morsus-ranae* L., in Ottawa. The Canadian Field Naturalist 54: 44-45.